A cardiac arrhythmia syndrome caused by loss of ankyrin-B function.
نویسندگان
چکیده
220-kDa ankyrin-B is required for coordinated assembly of Na/Ca exchanger, Na/K ATPase, and inositol trisphosphate (InsP(3)) receptor at transverse-tubule/sarcoplasmic reticulum sites in cardiomyocytes. A loss-of-function mutation of ankyrin-B identified in an extended kindred causes a dominantly inherited cardiac arrhythmia, initially described as type 4 long QT syndrome. Here we report the identification of eight unrelated probands harboring ankyrin-B loss-of-function mutations, including four previously undescribed mutations, whose clinical features distinguish the cardiac phenotype associated with loss of ankyrin-B activity from classic long QT syndromes. Humans with ankyrin-B mutations display varying degrees of cardiac dysfunction including bradycardia, sinus arrhythmia, idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, and risk of sudden death. However, a prolonged rate-corrected QT interval was not a consistent feature, indicating that ankyrin-B dysfunction represents a clinical entity distinct from classic long QT syndromes. The mutations are localized in the ankyrin-B regulatory domain, which distinguishes function of ankyrin-B from ankyrin-G in cardiomyocytes. All mutations abolish ability of ankyrin-B to restore abnormal Ca(2+) dynamics and abnormal localization and expression of Na/Ca exchanger, Na/K ATPase, and InsP(3)R in ankyrin-B(+/-) cardiomyocytes. This study, considered together with the first description of ankyrin-B mutation associated with cardiac dysfunction, supports a previously undescribed paradigm for human disease due to abnormal coordination of multiple functionally related ion channels and transporters, in this case the Na/K ATPase, Na/Ca exchanger, and InsP(3) receptor.
منابع مشابه
Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes.
We identify a human mutation (E1053K) in the ankyrin-binding motif of Na(v)1.5 that is associated with Brugada syndrome, a fatal cardiac arrhythmia caused by altered function of Na(v)1.5. The E1053K mutation abolishes binding of Na(v)1.5 to ankyrin-G, and also prevents accumulation of Na(v)1.5 at cell surface sites in ventricular cardiomyocytes. Ankyrin-G and Na(v)1.5 are both localized at inte...
متن کاملDefining new insight into atypical arrhythmia: a computational model of ankyrin-B syndrome.
Normal cardiac excitability depends on the coordinated activity of specific ion channels and transporters within specialized domains at the plasma membrane and sarcoplasmic reticulum. Ion channel dysfunction due to congenital or acquired defects has been linked to human cardiac arrhythmia. More recently, defects in ion channel-associated proteins have been associated with arrhythmia. Ankyrin-B ...
متن کاملAnkyrins and Spectrins in Cardiovascular Biology and Disease
Ankyrins are adaptor proteins critical for the expression and targeting of cardiac membrane proteins, signaling molecules, and cytoskeletal elements. Findings in humans and animal models have highlighted the in vivo roles for ankyrins in normal physiology and in cardiovascular disease, most notably in cardiac arrhythmia. For example, human ANK2 loss-of-function variants are associated with a co...
متن کاملAnkyrin-B Syndrome: Enhanced Cardiac Function Balanced by Risk of Cardiac Death and Premature Senescence
Here we report the unexpected finding that specific human ANK2 variants represent a new example of balanced human variants. The prevalence of certain ANK2 (encodes ankyrin-B) variants range from 2 percent of European individuals to 8 percent in individuals from West Africa. Ankyrin-B variants associated with severe human arrhythmia phenotypes (eg E1425G, V1516D, R1788W) were rare in the general...
متن کاملNovel Variant in the ANK2 Membrane-Binding Domain Is Associated With Ankyrin-B Syndrome and Structural Heart Disease in a First Nations Population With a High Rate of Long QT Syndrome.
BACKGROUND Long QT syndrome confers susceptibility to ventricular arrhythmia, predisposing to syncope, seizures, and sudden death. While rare globally, long QT syndrome is ≈15× more common in First Nations of Northern British Columbia largely because of a known mutation in KCNQ1. However, 2 large multigenerational families were affected, but negative for the known mutation. METHODS AND RESULT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 24 شماره
صفحات -
تاریخ انتشار 2004